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ABSTRACT--Cell-centered finite-volume (CCFV) schemes have certain attractive properties for

the solution of the equations governing compressible fluid flow. Among others, they provide a

natural vehicle for specifying flux conditions at the boundaries of the physical domain. Unfor-

tunately, they lead to slow convergence for numerical programs utilizing them. In this report a

method for investigating and improving the convergence of CCFV schemes is presented, which

focuses on the effect of the numerical boundary conditions. The key to the method is the compu-

tation of the spectral radius of the iteration matrix of the entire discretized system of equations,

not just of the interior point scheme or the boundary conditions.

1 Introduction

The traditional finite-volume schemes are based on cell-centered schemes. In these schemes the flow

quantities are stored at the center of the computational cell and the metrics defining the shape

of the cell are at the cell vertices or the nodes of the computational grid. An alternative method

is the cell-vertex based scheme, where the physical and the geometric quantities are stored at the

cell vertices. In both methods the viscous flow equations are solved using the integral form of

the Navier-Stokes equations, which guarantees that the conservation principles of the governing

equations are also satisfied in the discretized form.

Cell-centered schemes have been ill wide-spread use for a number of years [5, 6, 9], but more

recently cell-vertex schemes have been gaining popularity [4, 8, 10, 11]. Cell-centered finite-volume

schemes have certain desirable properties for the solution of compressible fluid flow problems. They

are generally more accurate than cell-vertex based schemes, use fewer operations per point since

averaging is done over smaller stencils, and also lead to more physical boundary conditions, since flux

computations at the boundary of the computational domain coincide with actual grid boundaries. In

contrast, cell-vertex schemes usually employ extrapolations from the interior of the grid to produce

boundary fluxes. In addition, cell-vertex schemes require an extra step to recover the update of the

physical quantities at the cell vertices.

The accuracy claim made above for the cell-centered scheme is disputed by Roe [10] and Rossow

[11], who maintain that for non-smooth meshes that are typical of realistic geometries cell-vertex
schemes are at least first order accurate, whereas cell-centered schemes are of zeroth order. In other



words,the truncation error remainsfinite for vanishinggrid spacing.However,it hasbeenshown
[13,14] that evenfor non-smoothmeshes,cell-centeredschemesarealwaysfirst order if the fluxes
at the cell facesarecomputedproperly. On smoothmeshescell-centeredschemesaresecondorder
accurate,but cell-vertexschemesaresecondorderonly underspecialcircumstances.

One reasonwhy cell-centeredschemesare still not muchused is that they tend to lead to
very slow convergencein viscousflow situationswith explicit boundary valueupdates. This has
not beena major difficulty in the earlierapplicationof theseschemeswhenthe flow solverswere
explicit. However,with the adventof implicit methodssuchas the alternating-directionimplicit
schemes[1]developedfor the Navier-Stokesequations,theslowconvergencerateshavebeenamajor
handicap. The slowconvergenceratesof cell-centeredschemeswerefirst noted whensomeof the
popular finite-differencecodes,suchasCNS [2]and ARC2D [12],wereconvertedto cell-centered
finite-volumecodes(seefor examplethe papersby Klopfer [7] and Yoon [15]). The time steps
had to be reducedby morethan an orderof magnitudeto maintainnumericalstability. A similar
deteriorationof convergencewasnotedwith cell-centeredunstructuredgrid schemes[3]. As will be
shownin this study, the major causeof the slowconvergenceis the explicit applicationof certain
boundaryconditions.Finite-differenceandcell-vertexfinite-volumeschemesareimperviousto this
problem.

The slowconvergencecanbe relievedby imposingthe boundaryconditionsimplicitly. However
implicit boundaryconditionimplementationsareoftendifficult or impossibleto achievewith popular
structured-gridsolutionalgorithmssuchas Beam-WarmingADI schemes[1]or LUSGS[15],and
with unstructured-gridalgorithms [3] as well. Here we will demonstrate,through the study of
a successionof model equationsof increasingcomplexity,that the judicious choiceof relaxation
factorsfor the explicit updateof boundaryvaluescan rendersuchupdatesasefficientnumerically
aswouldbe a completelyimplicit implementation.

2 Steady, scalar 1-D model equation

A simple model equation for viscous fluid flow is the linearized, steady, one-dimensional convec-

tion/diffusion equation.

du d 2u

C_xx = #_xx 2 (1)

Assuming unit density throughout, the convection speed c and viscosity # can be combined into the

Reynolds number: Re clef C/_. We also introduce the cell Reynolds number on a uniform grid with

mesh spacing Ax: Rec def ReAx. Applying central differencing to equation 1 leads to the following
discrete equation.

(1 + Rec/2)ui_l - 2ui + (1 - Rec/2)ui+l = 0. (2)

A second-order-accurate finite-volume formulation of the Dirichlet boundary conditions ut_=a = u_,
u[z=b = ub is obtained by setting

 (ul 1+ u2)= uo, + = (a)
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wherethe true physicalboundariesat x = a and x = b are at half-way points xa and xb between

interior grid points and ghost points. See Figure 1.
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Figure 1: One-dimensional finite-volume grid

If the one-dimensional problem is embedded in an operator-split multi-dimensional problem,

boundary conditions schemes are often applied separately from the interior-point advancement.

Such schemes are usually implemented by first updating the ghost-point values ul and u, using

Equation 3 to ensure that the boundary conditions are satisfied, meanwhile keeping the interior-

point values constant• Subsequently, the interior-point values are updated (in this case by using

Equation 2), but now the ghost-point values are kept unchanged. If we use the tilde symbol ' -' to

indicate the intermediate ghost-point values after application of the boundary conditions, we can

write the above scheme as a two-step semi-implicit procedure:

Step 1:

k+l
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Step 2:
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Combining Equations 4 and 5, we obtain a single-step iterative scheme whose iteration matrix N

is given by:

1 /-1/0-1 /

R_ -2 1 _ 0I+T

N = -.. ... (6)
1+ TR_ -2 1- -g'n_ 0

1 -1 0



The eigenvaluesof N determine the convergence rate of the scheme• These are found by setting

Nq = Aq:

--q2 = /_ql,

0 = A{(1 + Rec/2)qi-1- 2qi+ (1- Rec/e)qi+l}, i= 2,...,n- 1, (7)

-q,-1 = Aqn.

The solution to this set consists of two distinct families. The first one has n - 2 eigenvectors

that all correspond to an eigenvalue of zero. This eigenspace is spanned by the n - 2 basis vectors:

span{el, ca, e4, • • •, en-3, en-2, e_}. The second--non-trivial--family has nonzero eigenvalues, which

determine the actual convergence of the scheme. The general solution to the equations for the

eigenvectors at interior grid points is of the form

Re

1 + -g- (8)
qi=a+fir i, with r-] Re.
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The constants a and fl are determined by applying the two 'boundary conditions' of Equation 7,
which are written in matrix form:

A+I Ar n+r n-1 =0. (9)

This equation only has nontrivial solutions if the determinant of the matrix on the left hand side is

zero, which yields the following eigenvalues:

T -- T n-2

AI,_ = -1, r__l _ 1 (10)

Weak convection

In case of weak convection we can write r _ 1 + Rec and r k _ 1 + kRec, so

3-n
/_1,2 : -1,- + O(Re_). (11)

n--1

Apparently, the effect of convection on the rate of convergence of the scheme vanishes (to first order)

for small values of the cell Reynolds number. Since n _> 3 for a finite-volume scheme, A2 is always

negative, and smaller in absolute value than 1. But As approaches -1 for large n, and A1 = -1, so

the method will never converge, although the interior points are updated using an implicit scheme.

The lack of convergence is due to the boundary-value update scheme. The fact that the eigenvalues

of the iterative scheme are both (close to) -1 suggests, however, that underrelaxation may help.

Consequently, we replace the boundary value update Equation 4 by:

k+l

t_ 2

_n-1

ltn f
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All otherstepsin the determinationof the eigenvaluesof the iteration matrix stay the same,and
wenowfind:

)_x,2 _ (20- 1), (20- 1)n + 3- 40 (13)
72-1

Minimizing the spectral radius of the iteration matrix yields:

2-n 1
--. (14)

0- 3-2n --+ p(N) _ 3-2n

Obviously, excellent convergence is obtained with this choice of the underrelaxation factor 0. For

large grid sizes the value of 1/2 for 0 is completely satisfactory.

Strong convection

The situation changes rather dramatically in case the convection is strong (large Rec). We introduce

the small parameter e = 1/Rec. Again, the first non-trivial eigenvalue of N is -1. But the value of

A2 depends on the parity of n:

,_2 = 1-8(n-2)e 2+O(C a) forneven (15)

n-3
- + O(J) for n odd (16)

n-1

Regardless of the parity of n, however, )_2 approaches 1 for large grid sizes as the cell Reynolds

number goes to infinity, which indicates that underrelaxation will not speed up convergence• Indeed,

if we underrelax the boundary conditions, we find:

A1,2_(20-1), 1or (1-0)+0. (17)
?2--

It follows that A2 is always close to or equal to 1, independent of the value of 0.

The situation may be remedied by using a more physically relevant boundary condition at the

downstream boundary of the domain. Assuming a positive convection speed, we replace the Dirichlet

boundary condition at z = b by a Neumann condition. A second-order-accurate implementation of
the condition d_ [z=b = 0 is obtained by setting:

gk+l k (18)n _ Un-1 '

Underrelaxing the Neumann and Dirichlet conditions using ON and OD, respectively, produces the

following system:

k+l

Ul

U2

_rL-

Un

I OD

0 D -- 1

1

1

1 - ON ON

I Ul

U2

bn-

Un

Ii/+ 20 - . (19)

5



We repeat the eigenvalue/eigenvectoranalysiscarried out above. The componentsof the non-
trivial eigenvectorq canagainbe written asqi = a + fit/, but now the definition of T is changed

to: V = (2e -- 1)/(2e + 1). Notice that now lim_¢0 T = --1 (large cell Reynolds number), whereas

before it was 1 (small cell Reynolds number). The small (2 x 2)-determinant equation producing

the non-trivial eigenvalues of the iteration matrix (cf. Equation 9) becomes:

A - 1 AT -- T2 + ON(T 2 - T) = 0.
A + 1 -- 20D A7n ÷ T n-1 -- OD(T n ÷ T n-l)

(20)

The expressions for the roots A1,2 are not very insightful in general. We investigate the case where

the cell Reynolds number approaches infinity, so r approaches -1.

For an even number of grid points (n), Equation 20 reduces to:

2/_2 -- (OD ÷ ON)/_ ÷ 1 ÷ (1 -- 20D)(1 -- 2ON) = 0. (21)

The roots of this equation are both zero (and hence produce a spectral radius equal to zero) for

OD = ±1/V/2, ON = --OD. Notice, however, that a negative value of a relaxation factor corresponds

to an overrelaxation (i.e. an extrapolation) of a boundary value, which is prone to instability. If we

limit the relaxation factors to positive values and set ON equal to zero, we find an optimal spectral

radius of p(N) = x/_ - 1(_ 0.4) by choosing OD = 2(V/-2 - 1).

Unfortunately, the picture is not so rosy in case the number of grid points is odd. Equation 20

becomes singularly perturbed for large cell Reynolds numbers (coefficient of A2 disappears), and we

have to take limits carefully. Whereas the root corresponding to the reduced equation (Rec =- oc)

is given by

A = 1 - (1 - 20N)(1 -- 20D) (22)
4 - 2(ON+ OD) '

which can always be made to equal zero, the other root is asymptotically proportional to the cell

Reynolds number, irrespective of the choice for the relaxation factors; the scheme always diverges

for large Rec.

The solution to the problem--not too surprisingly--is to use upwind differencing in case of

strong convection. The resulting iteration matrix for the Neumann/Dirichlet condition is:

N }1{ }
1 OD OD -- 1

l + Re_ -2- Re_ 1 0

• .. "..

l + Re_ -2- Re_ 1 0

1 1 - ON ON

Equation 20 is still valid, provided r is defined by 1 + Rec.

reduces to:

(23)

For large cell Reynolds numbers it

(20D -- A- 1)(0N -- A) = O, (24)



so a spectral radius of approximately zero (:an be obtained by setting 0 D = 1/2 and ON = 0. For

small cell Reynolds numbers the eigenvalue equation is:

(n - 1)A 2 + (20D(1 -- n) + 2-- 0N)A + (20D -- 1)(n-- 2 + ON) -- 1 = O. (25)

For large n (many grid points) the spectral radius has the form: p(N) = 1- O(1/n); the convergence

deteriorates for vanishing convection and large grid sizes, and the Neumann outflow boundary

condition should not be used. Reverting to Dirichlet conditions, underrelaxed by 50%, restores the

excellent convergence also obtained when using central differencing•

We now combine the previous analyses into a rule of thumb:

Apply Dirichlet boundary conditions on inflow boundaries and always underrelax by 50Yo. In case

of strong convection, use upwind differencing and apply Neumann boundary conditions on outflow

boundaries, but do not underrelax these conditions.

3 Time-dependent, scalar 1-D model equation

We now investigate the convergence properties of finite-volume formulations of the linearized, time-

dependent, one-dimensional convection/diffusion equation:

Ou Ou 02u

0-7+ = (26)

We apply the Euler-implicit method for the time integration (k-superscript) and central differencing

in space (/-subscript) at all interior grid points.

. x_ k+l(1 + Rec/2)u_+_ -(2 + "J_i + (1 - Rec/2)u_ +1 = -uu_, with (27)

CFL def_cat /2 def__ Re_ _ Ax 2
Ax ' CFL pAt

Again, boundary values are updated as in Equation 4, where k now signifies the time step instead

of the iteration number. Advancement of the interior-point values takes place through solution of

Equation 27. The resulting two-step scheme can again be combined into a single equation, whose

amplification matrix is given by (cf. Equation 6):

N

1
Re

1+5- -2 - u 1 Re
2

1+ x_ 2-v
2

Re

1-- 5-
1

-1 0

-1

--/2

(28)

Explicit expressions for the eigenvalues of N cannot be obtained in general, but some limiting

cases are easily identified•

lim N=I, limN=l. (29)
u--++oo u$O
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Whereasthe first limit is expectedand acceptable--forinfinitely small time stepsconvergencewill
beinfinitely slowaswell--the secondishighlyundesirable,sinceit impliesthat very largetimesteps
will leadto very slow convergenceaswell. This is an artifact of the applicationof the boundary
conditionsof the finite-volumescheme,and we attempt to solvethe convergenceproblemin the
samevein asbefore.

Weak convection

In Figure 2 the effect of underrelaxing Dirichlet boundary conditions for a weakly convective case

(Rec = 2) on a small grid (n = 40) is depicted. The cell Reynolds number is chosen such that

the discretization matrix for the interior point scheme is guaranteed to be diagonally dominant for

all finite sizes of the time step, a property often judged desirable in fluid flow computations. The

dashed and solid lines indicate the amplification factor in the absence of relaxation and with 50%

underrelaxation, respectively. For curiosity's sake we also plot the amplification factor corresponding

to 30% underrelaxation (dotted line).
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Figure 2: Amplification factor for underre-
laxed Dirichlet boundary conditions; weak

convection (Rec = 2)

Figure 3: Amplification factor for under-

relaxed Dirichlet boundary conditions; no

convection (Rec = O)

Notice that all three curves collapse onto the same branch for larger values of v, i.e. as the

time step goes to zero. The improvement through the 50% underrelaxation for small values of v

is apparent. The fact that the amplification factor does not decrease strictly monotonically as v

approaches zero is due to the presence of convection. As the cell Reynolds number vanishes, the

underrelaxed amplification factor becomes strictly monotone and reduces to zero for infinite time

step (see Figure 3). The curve corresponding to the nonrelaxed boundary conditions, however,
remains non-monotone.

If we underrelax the mildly convective case between 50% and 30%, the intersection point with

the vertical axis (amplification factor for infinite time step) does not change much, although the

minimum amplification factor for nonzero _, may decrease. For relaxation factors outside the above

range the intersection point actually moves up, and gains are diminished.

It is also apparent from Figures 2 and 3 that even underrelaxation by 50% does not completely

save the difference scheme from deterioration in the case of total absence of convection. Only



for infinite time step doesthe amplificationfactor go to zero,but for finite time step the factor
approaches1 evermorerapidly asthe ('.ellReynoldsnumberdrops.

Strong convection

As in the steady analysis, we apply upwind differencing and Neumann boundary conditions at the

outflow boundary for the strongly convective case, and modify Equation 28 accordingly. Now it

is most useful to study the behavior of the difference scheme for a certain fixed CFL number. We

first investigate the case of infinitely strong convection. The outflow boundary condition cannot be

enforced anymore since the spatial differencing reduces in the limit to a one-sided difference, so the

set of equations determining the eigenvalues of the amplification matrix becomes (cf. Equation 7):

--372 : ,_l ,

-x//CFL ---- A (xi_, - (1 + 1/CFL)xi) . (30)

Solving the recursive interior-point equation and substituting the boundary condition yields the

following asymptotic result for large CFL numbers: p(N) = 1 - 2/CFL. Applying underrelaxation

of the Dirichlet (upstream) boundary condition gives for large values of the CFL number:

1 (&) 1p(N) - _FL +0 , for OD= _,

( 1 ) 1 (31)= 20D--l+O -_ , forOD#_.
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Figure 4: Amplification factor for underre-
laxed Dirichlet boundary conditions; small

CFL number (CFL = 1)

Figure 5: Amplification factor for un-
derrelaxed Dirichlet boundary conditions;

medium CFL number (CFL = 10)

Obviously, 0 D : 1/2 is again a good choice. For cell Reynolds numbers of finite magnitude

we apply the same underrelaxation of the Dirichlet boundary condition, and leave the Neumann

boundary condition again untouched. The results for varying values of the CFL number are show in

Figures 4, 5, and 6, together with the amplification factors for no underrelaxation of the Dirichlet

condition (dashed line), and underrelaxation of 30%. Although OD = 1/2, ON = 0 is not always the

optimal choice, it is always good, asymptotically best (large CFL), and easy to apply.
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Figure 6: Amplification factor for underrelaxed Dirichlet boundary conditions; large CFL number (CFL =

1000)

4 Unsteady, scalar 2-D model equation

We now extend the analysis to a two-dimensional, linear model equation for the convection/diffusion

process.

ou ou ou (o2u (32)
05 + + = u \ox2 + 0v2)

This problem is solved on a square mesh of (n - 2) × (n - 2) interior points The grid is depicted in

Figure 7, including the ghost points (crosses) that lie outside the grid boundaries. We also employ

the ghost points on the corners of the exterior grid (open squares) to arrive at a square total number

of points. But since they never enter the discretization scheme or the solution, we keep the values at

these corner ghost points fixed. We apply central differencing to all spatial derivatives (3_i denotes

the central difference operator in the xi direction), and backward differencing (Euler Implicit) to

the time derivative to arrive at the following discretization.

II "_ CFL x ((_x Recxl 52 ) --_-CFLy ((_y 1_5_1_2)] uk+l : uk-_l . (33)

Here we have defined: Rec,, = _ and CFLz_ _ If one or both of the convection speeds• # _-- Axi "

c_ are zero, equation 33 is simplified accordingly. As in the one-dimensional finite-volume case, we

update ghost point values such that the average of every couple of values at grid points straddling

the boundary equals the Dirichlet boundary value, or symbolically: u. +Ux = ub, where the subscript

b stands for 'boundary'. Application of the ghost point value update operator f2, which is the direct

analogue of the one-dimensional operator, gives the following time advancement scheme.

(I + Lz + Ly)u k+l = f_u k • (34)

Note the introduction of Lx and L u as shorthand for the spatial discretization operators. From

equation 34 we derive two additional schemes through ADI approximate factorization. Under the

assumption that L_ and Lu are small compared to I, a reasonable approximation is:

(I + L=)(I + Ly)u k+l = f_u k . (35)
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Figure 7: Two-dimensional finite-volume grid
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For large At, however, this assumption is not valid, and we have to adopt the so-called delta

form of the ADI method. This is derived from equation 33 by introducing the update quantity

Au k = u k+l - flu k, and by applying the approximate factorization only to the implicit part ('left

hand side') of the operator that multiplies Au k. The resulting delta form can be combined with

the non-delta form into a single equation.

(I + Lx)(I + L_)u k+l = (I + (1 - o_)LxLy)_u k . (36)

If a equals zero we obtain the delta form, whose final solution is independent of the size of the time

step. For any other a, the solution at convergence depends on the size of the time step, due to the

factorization error, which is proportional to aL_Ly. Algebraic analysis of the spectral radius of the

iteration matrix corresponding to equation 36 is too complex, so we resort to numerical investigation

instead. Figure 8 shows the spectral radius of the iteration matrix on a grid of 40 × 40 points for the

non-delta form of the ADI algorithm, and 9 for the delta form. Since the direct-inversion scheme

does not incur a factorization error, its delta and non-delta forms are identical. From Figure 8

we deduce that the non-delta forms benefit significantly from underrelaxation of the boundary

conditions for large time steps (small u). In fact, the ADI scheme converges as rapidly as the

direct-inversion scheme. But if we insist on a solution independent of the size of the time step, the

delta form of the ADI algorithm must be used, which gains virtually nothing from underrelaxation

(see Figure 9, where the curves for ADI with and without boundary update relaxation coincide).

Since direct inversion is not practical for many calculations of engineering value, we must find ways

of speeding up the ADI algorithm without giving up solution accuracy at convergence.

One approach to accomplishing this is to let the switch parameter c_ in the hybrid scheme

represented by equation 36 slide from one to zero during the course of the iteration process. We use

the fact that the convergence factor for the underrelaxed hybrid scheme behaves approximately as

11
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Figure 8: Amplification factor for non-

delta form (a = I); no convection

Figure 9: Amplification factor for delta

form (a = 0); no convection

follows for large time steps and for small a.

p(a) _ 1 - sc_, (37)

where s is a positive constant. This relationship is depicted in Figure 10, where the computed

spectral radius for the iteration matrix belonging to the 50% underrelaxed ADI scheme on the

40 x 40 grid is shown as a function of the switch parameter. The non-dimensional time step is set at

an arbitrarily large value of 1000. Note that keeping a constant at some value other than zero will

always speed up the convergence, but at the cost of final solution accuracy. We now analyze the

convergence of the entire iterative process for some choice of the way in which a goes to zero, i.e.

limk-_o_ ak = 0, where k is the number of the iteration or time step. Since the convergence is faster

1.0;

0.8

0.6
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0.4

0.2

0.05 0.10 0.15 0.20 0.25 0.30

O_

Figure 10: Amplification factor for hybrid ADI scheme; no convection

for values of a away from O, we select a fairly slowly decreasing function, namely a = z/(k+l), where

z is some positive constant. Without loss of generality, we can set z equal to the computationally

convenient 1Is. Consequently, we obtain Pk de=fp(ak) _ 1 -- 1/(k + 1). The 'convergence' factor for

p steps of the hybrid iterative scheme is:

II Pk_ IX ff-_ p-_-I
k=l,p k=l,p
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Evidently,the schemeisconvergingveryslowly,sinceafterp steps the compound convergence factor

is only 1/(p + 1). The error of the scheme, defined by ep = u °¢ - u p, is estimated as follows. At

convergence, the solution u °z satisfies equation 34, i.e.,

(I + Lx + Ly)u _ = ftu _ • (39)

Subtracting equation 36 from equation 39 yields the following expression:

e p+I ---- [(I + Lz)(I + Ly)] -1 [(I + (1 -ap)ixLy]_e p +

ap [(I + L_)(I + ny)] -1L_Lyt_u _

= R(ap)e p + (_pt °°

= II R( k) el + 1] (40)
k=l k=l _--1

where R is the iteration matrix of the scheme defined by equation 36, and t _ is a quantity dependent

only on the converged solution. The norm of the error can be bounded as follows:

Ilep+lll-< II pkll  ll+ II p, IIt°°ll. (41)
k=l i=l

Consequently, the solution error generally decreases at least as slowly as indicated by the compound

convergence factor (equation 38). For the choice of c_k = 1/(s(k + 1)), we find

[]eP+l[]- p-I- 1< [[el------L] -1- k_l= k21 [[t°_lls' (42)

which leads to the limiting result:

lim IleP+Xll < 7r2llt°cl------Jl (43)
p_oc -- 6s

This means that the scheme never converges to the correct solution, which appears to contradict

the fact that the compound convergence factor does approach zero.. But the computed convergence

factors apply to an ever-changing discretization scheme, due to the 'hybridization', and no conclu-

sions can be drawn about the eventual vanishing of their product per se. We note that even in the

case of a fairly slowly changing a, the scheme stalls. If we make a approach 0 more slowly, the final

solution error will be even larger. If more quickly, then convergence will be even slower. It thus

follows that the hybrid scheme does not have a fundamentally better convergence behavior than

the plain delta form of the ADI scheme, and relaxation of the boundary condition application will

not improve its performance.
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5 Conclusions

We have shown that it is possible to overcome the problems associated with the application of time-

lagged boundary value updates for cell-centered finite-volume schemes for simple one-dimensional

scalar, linear model equations. The appropriate technique relies on underrelaxing the boundary

value updates to annihilate or reduce oscillations. In two dimensions the same technique works

well for an approximately factored scheme, but the factorization error renders the solution useless

for large time steps. When the delta form of the scheme is used to reduce the factorization error,

convergence becomes very slow, even for a diffusion-dominated flow, and using underrelaxation of

boundary value updates is ineffective.
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